Research yields better seasonal climate forecasts

In the research project “Seasonal Predictability over the Arctic Region” (SPAR), scientists have made some discoveries that may lead to more reliable seasonal forecasts.

Seasonal forecasting is the prediction of weather over weeks and months, as much as three months ahead. Norwegian climate researchers collaborate with the European Centre for Medium-Range Weather Forecasts (ECMWF), based in the UK, on global forecasts of this type.

Photo: Edelpix Reliable weather forecasts, such as predicting storms heading for the Norwegian coast, are important to many people. Both weather forecasts and seasonal climate forecasts are steadily improving. Today’s five-day forecasts are as reliable as the three-day forecasts of a few years ago. Seasonal climate forecasts have also improved over time – but in the north, seasonal climate has proven harder to predict than in the south. (Photo: Edelpix)

Improved seasonal forecasting

Seasonal forecasting has proven reliable for tropical regions, but for the Arctic and countries in Northern Europe, forecasts have often been less accurate.

With funding from the Research Council of Norway’s programme on Climate Change and its Impacts in Norway (NORKLIMA), researchers working on the SPAR project have studied how seasonal forecasts can be improved. They believe this can be done by employing new knowledge about sea ice in the Arctic, snow cover in North America and Eurasia, and special conditions in the stratosphere.

Sea ice is declining

Heat exchange between the oceans and the atmosphere is a main factor in forming weather – and thus for the long-term forecasts of meteorologists. When the ocean in the Arctic is covered with ice, this heat exchange is blocked.

“One problem with the previous global seasonal forecasts from the ECMWF is that they have been based on long-term averages for Arctic sea ice extent. This means the forecasts have not adequately taken the dramatic changes of recent years into account, such as the major reduction in summer ice in the Arctic,” explains Rasmus Benestad, project manager of SPAR and a senior scientist at the Norwegian Meteorological Institute.

Illustration: Meteorologisk institutt The seasonal climate forecast for February to April 2012 predicts temperatures 1.0–1.5°C above normal (1961-1990) for most of Norway. The SPAR research project recommends attributing a greater role to sea ice, snow cover and stratospheric conditions when forecasting seasonal climate for the higher latitudes of Northern Europe. Findings from the project have already been implemented for this winter’s forecasts. (Illustration: Meteorologisk institutt) New calculation methods

Using their knowledge of Arctic sea ice developments over the past eight years, the SPAR project researchers worked out a new way of calculating the role played by sea ice. The ECMWF has already implemented this new description of sea ice significance into the latest version of its operational seasonal forecasting model.

“The latest version of the seasonal forecasting model predicts a mild winter for 2011/2012. So far, that forecast is holding up,” stated Dr Benestad in mid-January 2012.

The SPAR researchers also examined the role of snow cover. Their findings indicate that changes in Northern European and Northern Asian snow cover can indeed affect the weather in the Arctic, most likely by affecting ground temperatures. Changes in snow cover may also have an effect on high-pressure and low-pressure systems over Siberia.

Stratospheric impacts

The third factor the SPAR researchers examined was related to conditions in the stratosphere.

The stratosphere is the second major layer of earth's atmosphere, starting at roughly 10 to 15 km above the surface and continuing up to roughly 50 km. This atmospheric level is very stable – which is why the stratosphere has received little focus as a weather factor until now.

“We wanted to examine this more closely under the SPAR project,” says Dr Benestad. “We ran calculations on models with and without stratospheric conditions included and found that the stratosphere actually has quite a major influence on the weather ahead. So we recommend that the stratosphere be incorporated more actively into seasonal forecasts.”

Photo: Bård Gudim/met.no Senior Scientist Rasmus Benestad headed the SPAR project. (Photo: Bård Gudim/met.no) The stratosphere can play a key role in, for example, the important climatic phenomenon known as the North Atlantic oscillation (NAO) and can have a marked impact on meteorological model forecasts. The NAO affects Northern Europe’s temperatures, winds and precipitation from late autumn until early spring. Scientists have known since the 1920s that the NAO is caused by fluctuations in sea-level air pressure between the Azores Low and Icelandic High pressure centres, but until now little was known about what causes these fluctuations. The cold winters of 2009/2010 and 2010/2011 have been explained as anomalies in the NAO.

Factors affect each other

The atmosphere is extremely chaotic. The factors that shape our weather can also affect each other. When two factors are changing simultaneously – such as both sea ice and snow cover – the outcome may be entirely different from what would happen due to changes in just one or the other. In mathematical terms, the relationships are non-linear. This makes it all the more complicated to predict the weather weeks or months ahead of time.

“In the SPAR project we used models to run calculations on different ways the factors could affect each other. That gave us insight on the impact of sea ice on temperatures here in the north, particularly in the proximity of the Arctic ice. We concluded that more emphasis should be placed on the significance of sea ice in seasonal forecasting, particularly for autumn and winter.”

The Norwegian researchers participating in the SPAR project were from the Norwegian Meteorological Institute, the Bjerknes Centre for Climate Research, and the Norwegian Institute for Air Research.
 

 

Related news

Latest news

New contract: Windcat 41 - no 17 in the Servogear series

Servogear announces the signing of a new contract with Windcat Workboats BV for the delivery of Servogear Controllable Pitch Propellers (CPP)  for their new vessel Windcat 41. 

Seacat Enterprise to be launched January 12th

Seacat Services, is preparing to launch its first High Speed Utility Vessel (HSUV), Seacat Enterprise at January 12th.

Norsafe Signs Contract with the Swedish Coast Guard (KBV)

On Wednesday 21st December, Norsafe signed yet another new contract with the Swedish Coast Guard (KBV) to deliver nine new Magnum 750 MKII boats.

A Unique Second-generation Tomograph is Developed

A new gamma-ray tomograph designed to image up to 4” diameter pipes, is developed by CMR Prototech for the Saskatchewan Research Council (SRC) in Canada.

Sohome launches a new website

Sohome has launched a new website that makes it easier to find key information. 

Sohome AS receives orders for Johan Sverdrup Project

Sohome AS is proud to be a sub-contractor to Intelecom AS for the Johan Sverdrup Project. 

New 55'' Ultra High Definition Chart and Planning table passes Type Approval testing

Most advanced maritime display system ever produced, the 55'' Ultra High Definition Chart & Planning table, enables Integrated Bridge System manufacturers to develop new multi-data solutions.

Norsafe's experience in the Polar Code Pays Off

In readiness for the introduction of the Polar code, Norsafe has become the first LSA supplier to have executed full scale tests and trials 

Øglænd System Group winner of Business of the Year Award

Øglænd System Group won the Business of the Year Award in the Stavanger-region 2016.