Nano-Needles for Cells: Forcing medicine into resisting cells

Nano-sized needles developed by researchers at the Norwegian University of Science and Technology (NTNU) in Trondheim can force medicine into cells, even when the cell membranes offer resistance. The needles will make it easier to study the effects of medicines on cells.

Physicist Pawel Sikorski and his group are making beds of nails on a miniature scale -- a plate covered in nano-needles designed to puncture individual cells.

It sounds a bit painful, but none of these needles will be going directly into your body, because the test subjects are cells under the microscope. The researchers are working to develop advanced tools to understand what goes on inside the body's cells.

"These nano-needles will make medical research more efficient," he says.

Cells gobble up medicine

One way to understand how different molecules influence cell function is to deliver the molecules directly into cells and study the effect. Traditionally, this kind of research is done by first placing many different substances on a glass or other surface to study their effect on the cells of interest.

The substances might be a potential anticancer drug that works by affecting the cell's genetic material, or a molecule that will switch off a particular gene inside the cell. The researchers then cultivate cells on top of the potential medicine. Some of the cells will absorb the medicine, and the researchers can monitor the changes in the cells caused by the different drugs. But in many cases this method does not work very well, because some of the cells don't want to take their medicine.

"With the new method, we attach molecules of the drug being tested to the tips of the nano-needles, and then inject it the same way you would with an ordinary medical syringe," says Sikorski.

Grey grass and smart cells

The researchers create the nano-needles in a small ceramic oven. In goes something that looks like aluminium foil with a small burnt patch on it (which is actually a wafer-thin piece of copper), and two hours later at 500 degrees, the copper reacts with oxygen in the heat, creating copper oxide.

The final product looks like grey grass under the microscope, but the grass is actually the nano-needles. The next step is to put something similar to tallow onto the needles so that they can be removed from the copper plate. Glass is glued to the bottom, so that everything is transparent. The finished product looks like a small, round bed of nails. Researchers can now put cells on top of the nano-needles, and see if test drugs can be injected into cells.

But some cells are trying to fool scientists. While some cells readily impale on the nano-needles, others encapsulate the needles and grow around them.

"We are currently working on finding the correct methods to insert the needles, to ensure that all of the cells are impaled," says Sikorski.

Nobody else in Norway is making nano-needles like these. The NTNU researchers are also the first group in the world to develop an even larger-size copper surface with nano-needles.

 

(Source: Science Daily

Related news

Latest news

New contract: Windcat 41 - no 17 in the Servogear series

Servogear announces the signing of a new contract with Windcat Workboats BV for the delivery of Servogear Controllable Pitch Propellers (CPP)  for their new vessel Windcat 41. 

Seacat Enterprise to be launched January 12th

Seacat Services, is preparing to launch its first High Speed Utility Vessel (HSUV), Seacat Enterprise at January 12th.

Norsafe Signs Contract with the Swedish Coast Guard (KBV)

On Wednesday 21st December, Norsafe signed yet another new contract with the Swedish Coast Guard (KBV) to deliver nine new Magnum 750 MKII boats.

A Unique Second-generation Tomograph is Developed

A new gamma-ray tomograph designed to image up to 4” diameter pipes, is developed by CMR Prototech for the Saskatchewan Research Council (SRC) in Canada.

Sohome launches a new website

Sohome has launched a new website that makes it easier to find key information. 

Sohome AS receives orders for Johan Sverdrup Project

Sohome AS is proud to be a sub-contractor to Intelecom AS for the Johan Sverdrup Project. 

New 55'' Ultra High Definition Chart and Planning table passes Type Approval testing

Most advanced maritime display system ever produced, the 55'' Ultra High Definition Chart & Planning table, enables Integrated Bridge System manufacturers to develop new multi-data solutions.

Norsafe's experience in the Polar Code Pays Off

In readiness for the introduction of the Polar code, Norsafe has become the first LSA supplier to have executed full scale tests and trials 

Øglænd System Group winner of Business of the Year Award

Øglænd System Group won the Business of the Year Award in the Stavanger-region 2016.