Insights into biogeochemical cycles based on glacial meltwater chemistry – new data from SW Svalbard

Arctic Field Grant (AFG) 2012 and 2013 recipient Lukasz Stachnik and his colleagues from Norwegian and Polish institutions have published new articles on chemical denudation in the Werenskioldbreen catchment (SW Svalbard), showing an ongoing acceleration of biogeochemical processes.
Chemical denudation, which is a process of rock weathering and transport of dissolved solids, plays an important role in global biogeochemical cycles. Among others, there are two geochemical processes of global importance associated with glaciers – long-term sequestration of atmospheric CO2 due to silicate dissolution and CO2 decrease in seawater due to delivery of bioavailable iron to oceans from dissolution processes in glacierised basins.
“Determination of chemical processes under subglacial conditions and in the proglacial zone was the main focus of our research”, Lukasz states. Fieldwork of his research team was conducted in front of Werenskioldbreen near the Polish Polar Station in Hornsund. During extensive sampling campaigns Lukasz and his colleagues collected water, ice and snow samples, and carried out discharge measurements and ground penetrating radar (GPR) surveys during both the accumulation and ablation seasons. Fig. 1. Werenskioldbreen and its forefield (August 2010). (Photo: Łukasz Stachnik)
”Overall, we found that the rate of chemical denudation in the Werenskioldbreen catchment was one of the highest in Svalbard and was caused primarily by high discharge and secondary by rapid chemical weathering”,  Lukasz says.
“Our studies include simultaneous water sampling in the proglacial zone and from subglacial outflows, which is still an uncommon approach in glacier hydrology research. This sampling strategy enabled us to distinguish processes in the glacial system”, he says.
“Under subglacial conditions we found that sulphide oxidation, the main reaction producing bioavailable iron, is sourcing the subglacial channels more effectively than in subartesian outflows that were previously considered as having high rates of chemical weathering. In a long-term perspective, we think that expansion of subglacial channelized systems due to increased water delivery is going to drain higher loads of dissolved solids, including bioavailable iron, from the drainage system rather than inhibit chemical denudation due to quick flow through the subglacial drainage system”.
“Our research suggests a new biogeochemical coupling in the proglacial zone. Despite sulphide oxidation is a predominant reaction there, carbonate dissolution driven by atmospheric CO2 (defined as carbonation) causes high loads of Ca2+ and Mg2+. This reaction, in contrast to carbonation of silicate, has little effect on long-term CO2 sequestration. In a global perspective, loads of Ca2+ and Mg2+ may, however, have an influence on the environment in other way (i.e. by inhibiting an effect of ocean acidification by increase of seawater saturation with aragonite)”, Lukasz concludes.
Lukasz Stachnik, principal investigator of two AFG projects, recognizes that further development in understanding of role of glaciers in global biogeochemical cycles will aim to determine the relationship between land-terminating glaciers and coastal waters. Fig. 2. Vigorous subartesian outflows near to glacier terminus (September 2011). (Photo: Łukasz Stachnik)






Find out more:
Stachnik, Ł, Majchrowska, E, Yde, JC, Nawrot, AP, Cichała-Kamrowska, K, Ignatiuk, D, Piechota, A, 2016a. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. Journal of Hydrology 538, 177-193. DOI:10.1016/j.jhydrol.2016.03.059

Stachnik, Ł, Yde, JC, Kondracka, M, Ignatiuk, D, Grzesik, M, 2016b. Glacier naled evolution and relation to the subglacial drainage system based on water chemistry and GPR surveys (Werenskioldbreen, SW Svalbard). Annals of Glaciology, 57 (72). Available on Cambridge Journal Online 2016. DOI:10.1017/aog.2016.9



Related news

Latest news

Great interest in smart options

An increasing number of people become aware of how smart options can make the construction process more efficient and life for residents easier, says product manager NorDan Smart, Olav Hjørungnes.

Salmon Wellboat Sails Electric

The new MS SEIHAV has now gone on chart with the Norwegian salmon farming company Lerøy Seafood Group. A reliable and environmentally sustainable propulsion arrangement has been chosen for MS SEIHAV.

Servogear at Interferry 2016

It is almost time for the 41th annual Interferry Conference. From October 15-19, Servogear will be present in Manila.

Strainstall mooring monitoring for Hywind

Strainstall provides specialised mooring monitoring for pioneering floating offshore wind farm project, Hywind. Collaboration with MacGregor delivers fully integrated mooring solution to monitor the forces on the floating ...

NSM Signs contract with Embraer

Norwegian Special Mission signed a contract with Embraer to supply six (6) UNIFIS 3000 Navaids Flight Inspection Systems to be integrated into six Embraer Legacy 500 aircraft.

Designing the energy solutions for autonomous airships

The Stratobus project is a new concept for an autonomous airship, operating at an altitude of about 20 kilometers. It is led by Thales Alenia Space (TAS). CMR Prototech has been chosen by Thales Alenia Space to s...

Expanded collaboration with DNV GL - Business Assurance

Steinsvik and DNV GL - Business Assurance have signed a framework agreement on product certification of barges for aquaculture.

"Maud" Returns Home

CMR had two men working on the research ship "Maud", Harald Ulrik Sverdrup and Odd Dahl. Both helped Roald Amundsen to get his project through and this highly scientific expedition could be realized. Sverdrup was scientifi...

The impact of NORCOWE

"NORCOWE has been instrumental for StormGeo’s positioning in the [offshore wind] market, " StormGeo’s vice president Renewables Jostein Mælan declared at NORCOWE 2016.