Finalist: Erlend Lunde Runestad

Erlend Lunde Runestad, 19 år, Trondheim
Skole: NTNU

SHS synthesis and analysis of TiB2 and WB4 using powder XRD and SEM

 

This project is a culmination of several years of extracurricular work with self-propagating high temperature synthesis of metal rich borides. Self-propagating high temperature synthesis (SHS), is a type of chemical reaction that involves a self-sustaining exothermic process. In this study, the reaction between titanium or wolfram and two different allotropes of boron was carried out, to produce titanium diboride and wolfram borides, respectively.

Ti(s)+2B(s) -> TiB2(s)
W(s)+4B(s) -> WB4(s)

The experiments were set up to investigate the validity of the reactions and also the composition and properties of the resulting material. This also includes investigating the difference between reactions carried out with metallic or amorphous boron and also with the use of varying ignition sources. SHS reactions are carried out at very high temperatures. For example, the ignition temperature for an SHS reaction to produce titanium diboride is approximately 1000°C.

Three methods for ignition and heating were used: An oxygen-acetylene torch, an electric muffle furnace, and also an electric arc with wolfram electrodes. In addition to this, two main methods of analysis were used, including powder x-ray diffraction and scanning electron microscopy. The products of these reactions were mostly porous, except the samples from the electric arc method. Only the reactions with amorphous boron were noted to be self-propagating, as the metallic boron (β-boron) was much less reactive.

The SEM pictures revealed hexagonal TiB2 crystals, and also the presence of hollow hexagonal crystal formations. This means that the sample was porous at both a macroscopic and microscopic level. The XRD analyses proved three major points. Firstly, all three methods and both boron allotropes were able to produce titanium diboride. However, the methods using amorphous boron produced the most pure and uniform samples of titanium diboride, while the metallic boron methods contained many oxide and nitride impurities. Secondly, the methods using metallic boron and electric arc heating seemed to produce different amounts of nitride impurities depending on their exposure to air. This concludes that these reactions should be performed in an inert atmosphere. Lastly, the wolfram tetraboride tests suggested that most of the wolfram did not react and also formed W2B5 instead of WB4.

For future experiments, it could be beneficial to recreate the muffle furnace experiments, to further study the hollow hexagonal crystals created. The hollow crystals could potentially give an extremely porous material with an enormous surface area, which is very beneficial for catalytic purposes.

 

 

 

Related news

Latest news

New contract: Windcat 41 - no 17 in the Servogear series

Servogear announces the signing of a new contract with Windcat Workboats BV for the delivery of Servogear Controllable Pitch Propellers (CPP)  for their new vessel Windcat 41. 

Seacat Enterprise to be launched January 12th

Seacat Services, is preparing to launch its first High Speed Utility Vessel (HSUV), Seacat Enterprise at January 12th.

Norsafe Signs Contract with the Swedish Coast Guard (KBV)

On Wednesday 21st December, Norsafe signed yet another new contract with the Swedish Coast Guard (KBV) to deliver nine new Magnum 750 MKII boats.

A Unique Second-generation Tomograph is Developed

A new gamma-ray tomograph designed to image up to 4” diameter pipes, is developed by CMR Prototech for the Saskatchewan Research Council (SRC) in Canada.

Sohome launches a new website

Sohome has launched a new website that makes it easier to find key information. 

Sohome AS receives orders for Johan Sverdrup Project

Sohome AS is proud to be a sub-contractor to Intelecom AS for the Johan Sverdrup Project. 

New 55'' Ultra High Definition Chart and Planning table passes Type Approval testing

Most advanced maritime display system ever produced, the 55'' Ultra High Definition Chart & Planning table, enables Integrated Bridge System manufacturers to develop new multi-data solutions.

Norsafe's experience in the Polar Code Pays Off

In readiness for the introduction of the Polar code, Norsafe has become the first LSA supplier to have executed full scale tests and trials 

Øglænd System Group winner of Business of the Year Award

Øglænd System Group won the Business of the Year Award in the Stavanger-region 2016.