ROV expedition on the Jan Mayen Ridge

Using a remotely operated underwater vehicle with an installed saw (!), researchers have acquired geological samples from the Jan Mayen Ridge this summer. The method is new – and the results provide new and useful knowledge.

The ROV is prepared for the first dive.

The ROV is prepared for the first dive.
On this dive, it will retrieve the up to now oldest stratigraphic deposits from the Jan Mayen Ridge.

 

“This is the most fun thing I have done as a geologist!” says Robert W. Williams in the Norwegian Petroleum Directorate (NPD), who took part in the expedition with the G.O. Sars research vessel.

The expedition is a collaboration between the NPD and the University of Bergen, through Professor Rolf-Birger Pedersen at the Centre for Geobiology.

The ship sailed from Akureyri in northern Iceland on 4 August. During the course of two weeks, geological material was acquired from five locations in the steep underwater cliffs on the Jan Mayen Ridge, both on the Norwegian and Icelandic sides.

Williams says that the expedition will provide considerable new knowledge about the geology off Jan Mayen, but that it is too soon to say whether there could be oil or gas there.

Furthermore, he says that the findings match the seismic from the area perfectly – but that the surveys have also entailed some surprises:

“I hadn’t expected there to be so much sandstone there, for example. Over basalt layers of approx. 250 metres (basalt = volcanic rocks), we measured sandstone layers more than 250 metres thick.”

The Jan Mayen Ridge was formed in the Oligocene Epoch approx. 30 million years ago. Williams describes the geology on the Jan Mayen Ridge as a mirror image of Greenland. Jan Mayen is located between Norway and Greenland, north of Iceland. Greenland and Norway used to be located very close together, much closer than the current distance between Norway and the UK.

During two major rift episodes, the Norwegian Sea and Greenland Sea were formed. Greenland and Norway separated when the Norwegian Sea was formed; Jan Mayen remained a part of Greenland. When the Greenland Sea formed, Jan Mayen was separated from Greenland, forming a microcontinent.

Water depth in the surveyed area varies from 600 to 2000 metres. Little is known about the geology, the data material that exists is scattered seismic data from the 1980s and shallow boreholes from 1974. The NPD acquired 2D seismic off Jan Mayen this summer, but the data has not been interpreted yet.

The ROV expedition was lead by Professor Rolf-Birger Pedersen, head of the Centre for Geobiology at the University of Bergen.

Samples were taken with an ROV on the Jan Mayen Ridge last year as well, but since an ROV with a grab was used, nearly only loose material was sampled. This made it difficult to determine the age of the rock:

“We couldn’t know for certain if the rocks really came from the Jan Mayen Ridge or if they were foreign rocks brought with icebergs from Greenland,” Williams explains.

Icebergs can drag with them rocks, sand and gravel from the mountain where the icebergs are located. These rocks are sometimes released on the seabed far from their origin and can be found scattered across the North Atlantic.

On this year’s expedition, some innovative steps were taken in relation to the tool in order to obtain samples directly from the solid bedrock.

”Professor Pedersen went to a building materials store and bought a large, hydraulic chainsaw which is actually intended for foundation work. The ROV mechanics replaced some hoses, made some adjustments and installed it on the ROV,” says Williams.

The patent worked as the researchers had hoped – and a total of nearly 40 samples were taken, the largest stone block weighs 40-50 kilos.

 

Chain saw ready for action.

Chain saw ready for action.

 

“We have learned a lot, and we understand the geology much better now than last year,” Robert W. Williams summarises.

The basalt samples will now be analysed at the University of Bergen and the sedimentary rocks will be dated by the NPD.

 

ROV control room during the first dive.

ROV control room during the first dive.
Two engineers from Argus control the ROV.

Associated companies:


 

Related news

Latest news

Nemko Publishes Short Notes on China

Nemko has published a some updates related to China and new initiatives regarding standards, product safety and cyber security. 

Technip and FMC Technologies Shareholders Approve Business Combination

FMC Technologies Inc. and Technip S.A. have announced that the companies' respective shareholders have voted to approve the proposed business combination of Technip and FMC Technologies.

Nordsild

The fishing vessel "North Herring" belonging to Norsild Havfiske AS with factory from Melbu Systems was in August ready for cod fishing.

One of the Strongest Earthquakes in New Zealand in 200 years

NORSAR reports that New Zealand’s South Island was struck by one of the strongest earthquakes the country has observed in the past 200 years November 13, 2016.

Jotne Subsea Gas Lift for Balder Field

In April 2015, Jotne E&P was awarded an EPC contract to build the subsea gas lift manifold for Exxon Mobil on the Balder Field.

Jotne Awarded Contract for Subsea Protection Structure

In January 2016, Jotne E&P was awarded a contract for the delivery of a subsea protection structure and GRP cover for a Xmas tree at Balder field. The contract was awarded by Ocean Installer.

UiB and CMR in high-tech collaboration

Students from UiB last month joined an experiment with an ultra-high-speed camera. This was a part of the troubleshooting of the Field Kelvin Probe currently under development.

Hatteland Display at International Workboat Show 2016

Hatteland Display are highlighting its diverse portfolio of maritime displays and panel computers on its booth (#1658) at the International Workboat Show 2016 (IWBS 2016) this week.

Servogear Announces Upcoming Events

Servogear announces a busy end of November, beginning of December. They will be participating at important international exhibitions.