A View to Clean Energy Leadership

International environmental pacts such as the Kyoto Protocol, combined with new market realities, are driving Norwegian research and development in the energy sector towards breakthroughs in clean, green energy production. Decades of experience and expertise in the cultivation of hydropower have led to the successful development of nearly all of the nation's large-scale hydro potential. Norwegian research institutes and companies are now actively involved in developing innovative technological solutions for reduced-emission energy sources to meet the needs of the future - both at home and abroad.

According to Hans Otto Haaland of the Research Council of Norway, the focus for industry and government in both short- and medium-term planning will be on nurturing renewable energy sources, reducing energy consumption, and creating a more flexible, reduced-emission energy system.

 

ETclean400x216.jpg (61207 bytes)
© Terje Knudsen/Norsk Hydro
A new era in power generation is dawning as Norway moves from sole reliance on hydroelectric power towards a new generation of renewables.

 

  

RENERGI - Developing Clean Energy Sources for a Dynamic Market
To move towards these goals, the Council's Executive Board established a programme in 2004 entitled RENERGI (a fusion of the Norwegian words for "clean" and "energy"). With a 2005 budget of approximately NOK 125 million, it's clear that energy research has now firmly taken its place as one of the Council's strategic target areas for the future.

 

According to the Council, three important factors prompted the creation of RENERGI:

 

- Increasing competition in energy industries, enhanced by the opening of previously restricted markets
- A trend of internationalization in the sector
- Increasing emphasis on environmental considerations

 

With these factors taken into account, the Council has defined RENERGI's primary objective as "developing knowledge and solutions as the basis for environment-friendly, efficient and effective management of the country's energy resources, security of supply and internationally competitive economic development related to the energy sector."

 

RENERGI Research - A Wide Variety of Energy Systems
Supporting innovation in the private sector to create better energy answers is a key goal of the project. For example, RENERGI is helping fund a project at Hydro's Porsgrunn research centre designed to further develop advanced ceramic membranes for use in gas power plants. These membranes promise improvements in CO2 purification and may also find applications in future hydrogen technology because of their ability to absorb CO2 and selectively release only oxygen. Natural gas is one of the key energy sources for the future, and researchers are hoping that applications like these will reduce or eliminate the challenge of CO2 emissions posed by the facilities.

 

RENERGI also funds important research in many aspects of energy use and creation. For example, two RENERGI-funded research projects concern diverse, reliable and small-scale energy systems. It's clear that smaller, clean power sources are expected to play a major part in the energy mix of the near future, so RENERGI has supported a four-year study by SINTEF and NTNU designed to develop models for how to successfully integrate different energy carriers (such as electricity, district heating, natural gas, and hydrogen) into the existing grid. 

 

Another RENERGI-funded project examines how small solar cells, hydro plants or windmills could be added close to the consumer without major difficulty, aiding the successful introduction of new and renewable energy sources to the grid.



ETclean400x253.jpg (39897 bytes)
© Statkraft
Statkraft's plans for a salinity or osmotic power generation plant feature new technology designed to create a pressurized mixture of brackish water than can drive a turbine, creating emission-free energy.

 

  

Salinity - A Potential Revolution in Renewable Energy
Wherever fresh and salt water meet - such as at the outlets from hydroelectric power stations - there is the potential for a salinity power plant to be built. Salinity energy is created by a process in which both fresh water and salt water are channelled into a membrane module. The fresh water is then transported through the membranes and into the sea water, which has been pressurized.

 

The membranes are created so they can transport water, but not salt. Once the fresh water passes through, the result is a pressurized mixture of brackish water, which then flows out of the module and into a hydropower turbine that, in turn, generates electricity.

 

Statkraft, the third-largest power producer in the Nordic region, has great hopes for this technology, and is leading the field in bringing the concept into reality. Salinity's technical potential is huge - Statkraft projects that salinity power plants will one day be able to create about 20 percent of Norway's current power production. Another plus is that salinity plants are flexible in terms of location and design. They can easily be added to existing power stations, thus reducing the investment costs.

 

"Salinity, or osmosis power, is a completely new concept, only being developed here in Norway," said Rolf Jarle, project manager for Statkraft's efforts in this area. "This form of power promises both volume and quality…and provides a stable baseload from a renewable source."

 

Promoting Hydrogen
Hydrogen looms large as perhaps the dominant energy source of the future, and one of Norway's leading energy companies, Hydro, is highly involved in the creation of equipment for producing hydrogen gas. Recently, the company played an important role in helping open the world's largest hydrogen fuel station for vehicles, sited in Berlin. The station is a project of Germany's Clean Energy Partnership, which strives to demonstrate that hydrogen fuel is a practical, emission-free alternative for the future.

 

Hydro's role in this project was to provide an electrolyser for the gas production process. The procedure involves splitting water into its two basic elements - hydrogen and oxygen. Once split, the hydrogen is pressurized and stored. Hydro's electrolyser can be controlled from Norway and is able to produce hydrogen on demand.

 

Hytrec, a hydrogen research and demonstration facility planned for technology nerve centre Trondheim, pools the production and technical expertise of power utility Statkraft, petroleum giant Statoil and classification society DNV. Besides developing new, safe and cost-effective technology for hydrogen use, Hytrec will also host a visitor's centre, where the public can learn about hydrogen's uses and advantages. The facility is due to open during the course of 2007.

 

 

ETclean400x403.jpg (123422 bytes)
© Vestas
Super-efficient turnbines like Vestas V-90 are solidifying wind power's important role in the renewable energy mix of the future.

 

 

 

 

Solar Leadership from an Unlikely Source

Perhaps paradoxically for a nation with so little sunshine, Norway's private sector is strong in the growing field of solar power. One of the brightest stars in the Norwegian energy sector today is ScanWafer, now ranked as one of the world's largest suppliers of silicon wafers to the solar energy industry.

 

The company has recently expanded to meet demand, opening two advanced new factories in Norway. ScanWafer hopes to continue its pattern of technological breakthroughs, which have caused wafer efficiency to rise over the years by some 25 percent - resulting in more economically viable solar power systems. At the new facilities, the company is employing a more efficient type of crystallization furnace, along with a greater degree of automation and intensive recycling of production consumables, to operate more cleanly and at lower costs.

 

The future is bright for innovative solar applications, according to the company. For example, car manufacturers are working with ScanWafer in order to explore ways to install solar panels in car roofs. These panels could create the power necessary to automatically cool overheated autos left for long periods in the heat of summer days. 

 

Exciting findings are taking place in Norway in the area of solar power research as well. Associate professor Turid Worren is in charge of a NTNU (Norwegian University of Science and Technology) project using nanotechnology to develop the next generation of solar power cells. Worren hopes to achieve energy exploitation ratios two to three times higher thanks to the use of quantum dot technology, a breakthrough technique that allows the cell to absorb some of the infrared light that ordinary cells cannot use. In sunny areas of the world, such cells could be the building blocks of future power plants. For use in more northern climes, the cells will be implemented with a decorative aspect in mind, so that they can create a pleasant effect on the outside of buildings.

 

Wind Growing in Strength
The Norwegian government has recently announced a commitment to create 1,000 MW (3.0 TWh per year) of wind power in Norway by the year 2010. In order to accomplish this, public authorities will rely on companies like Statkraft and Windcast Group, a division of Denmark-based Vestas, to innovate and increase productivity.

 

Statkraft is bullish on the future of wind energy, and has recently completed construction of Norway's largest wind farm, at Hitra in central Norway, in addition to expanding an existing facility at Smola on the country's northwestern coast. The company expects to generate 2.0 TWh of electricity from wind power by the 2010 target date set by the government.

 

Windcast specializes in the development and manufacture of castings for key components of wind turbines, such as hubs and machine foundations. Windcast recently merged with Vestas, the world leader in wind power technology. It is hoped that the strengths of the two companies will aid in bringing forward the newest innovations. One hopeful development is the super-efficient V90-3.0 MW turbine, with its ground-breaking nacelle design and blade innovations. The V90 design may soon play an important role in efficiently and quietly harvesting green power from the strong winds that buffer Norway's exposed coastlines.

 

Another major project designed to reach top speed in wind power technology is VIVA, the test centre for wind turbines that opened in Valsneset in June 2005. Founded and owned by NTNU, the Institute for Energy Technology (IFE), SINTEF Energy Research (Sefas), Valsneset Industry and Energy and Qubator, VIVA's goal is to achieve international accreditation and offer professional services, while serving as a lab for the development of new technology.

 

Floating Windmills
Hydro is testing a way to bring wind power to problem locations by building windmill parks on floating concrete constructions at sea. SINTEF marine research company MARINTEK is doing the model testing for the "Hywind" project as Hydro applies its offshore technology knowledge to a new area. Preliminary tests have been encouraging, and a demo windmill in the North Sea, to show feasibility at 200-300 metres ocean depth, is planned to be in place by 2007.

 

Harnessing the Tides with a Radical New Design
Tidal Sails AS is a Norwegian start-up company with a clean energy dream. Managing Director Are Borgesen believes his firm has come up with a vastly more efficient way to harvest the tidal power of the sea. Tidal Sail's "Harmonica" design and technology is currently being tested by the University of Hertfordshire in the United Kingdom. If it is successful, Borgesen believes his system could be 100-200 percent more power efficient than existing turbine-based tidal power systems.

 

Rather than a huge rotor or turbine typical of today's tidal power systems, the Tidal Sail design employs huge sails attached to cables which are submerged a minimum of 20 metres undersea. The sails are pulled by the action of the tidal stream flowing in and out. This action feeds a generator, which then creates electrical power. On average, the company expects that their system should be able to extract about 28 percent of the power of the undisturbed water.

 

Farming the Waves
Shipping and energy magnate Fred. Olsen is on the verge of realizing a pet project in his latest field, renewable energy. Years of considering the challenge led to action when he had a flash of insight watching oil barrels bobbing in the sea during a holiday in the Canary Islands.

 

The result is a very simple looking GRP (Glass-Reinforced Plastic) platform with a row of plastic balls underneath. The balls are forced up and down by the waves and the energy is converted to electricity. Brevik Engineering, ABB, FReCo, Dsc Engineering, DNV, MARINTEK/SINTEF, Brdr. Aa, Heimdals, NTNU and the University of Oslo have cooperated in the project, and four platforms are planned to be built over the course of the next two years.

 

The Big Picture
The common factor in all of these leading-edge projects is strong cooperation between organizations and industry. As Professor Johan Hustad, head of the NTNU/SINTEF Centre for Renewable Energy puts it: "The most interesting thing for Norway as a nation is not the energy potential but the industrial potential. Even if there is not a large domestic market for alternative energy, the global potential is huge."

 

ETclean400x400.jpg (118968 bytes)
© Norsk Hydro
Hydro is applying concrete construction technology developed for the North Sea oil industry to a offshore floating windmill concept. A demo windmill is planned to be in place by 2007.

Related articles

Latest articles

Ship Energy Efficiency: The Fourth Wave

Shipping has seen three waves of energy efficiency trends since 2007. The latest buzz is the Big Data revolution.

Sustainable Fish Farming Solutions: From Feed to Egg

The challenge of rising fish feed and sea lice costs is stimulating new sustainable technology solutions in Norwegian aquaculture. In the future, producers might raise salmon in egg-shaped offshore farms.

Standardization Key During Low Oil Price

The Norwegian petroleum industry is focusing on standardized solutions, inspired by Formula One and Lego, to help tackle rising field development costs.

Blue Growth for a Green Future

The Norwegian government recently launched its new maritime strategy “Blue Growth for a Green Future” aimed at keeping the country’s second largest export industry competitive and sustainable.

New Development Licenses Spur Ocean Farming

Norway has initiated free development licenses to spur new technology concepts to tackle the aquaculture industry’s acreage and environmental challenges. Many of the applicants are innovative ocean farms.

Bucking the trend: Norwegian Shelf Still Attractive

The Norwegian Continental Shelf continues to be attractive even amidst the low oil price environment. Statoil’s giant Johan Sverdrup oil field development is just the latest example.

British Showing Great Interest in “Frozen at sea”

The British are the world’s largest consumers of cod. 70 percent is used in the “fish and chips” market. Lately several Norwegian owners of trawlers have discovered the British market for the “frozen at sea” concept.

The many reasons to choose Norwegian seafood

There is an ongoing debate regarding the pros and cons of eating wild or farmed fish, or, in fact, eating seafood at all. In this article we look at the arguments for and against wild and farmed fish. Seafood is not just a...

New Ways to Enhance Oil Recovery

Norwegian companies are testing more advanced ways to enhance oil recovery, everything from converting shuttle tankers to stimulate wells and springing titanium needs inside liner holes to open up tight formations.